We report a NMR and magnetometry study on the expanded intercalated fulleride Cs3C60 in both its A15 and face centered cubic structures. NMR allowed us to evidence that both exhibit a first-order Mott transition to a superconducting state, occurring at distinct critical pressures pc and temperatures Tc. Though the ground state magnetism of the Mott phases differs, their high T paramagnetic and superconducting properties are found similar, and the phase diagrams versus unit volume per C60 are superimposed. Thus, as expected for a strongly correlated system, the interball distance is the relevant parameter driving the electronic behavior and quantum transitions of these systems.
-
Recent Posts
- Pressure tuning of light-induced superconductivity in K3C60
- Electrochemical intercalation of fullerene and hydrofullerene with sodium
- Effect of Ni-nanoparticles decoration on graphene to enable high capacity sodium-ion battery negative electrodes
- Single-Walled Carbon Nanotube Reactor for Redox Transformation of Mercury Dichloride
- Mott Transition in the A15 Phase of Cs3C60: Absence of a Pseudogap and Charge Order
Comments