Category Archives: Graphene

Neutron scattering study of nickel decorated thermally exfoliated graphite oxide

Surface decoration of graphene-based nanostructures with metals has been predicted to be an efficient way towards the development of resistant catalysts and novel materials for energy applications, such as hydrogen production and storage. We report on an extensive neutron scattering … Continue reading

Posted in Energy Storage, Graphene, Hydrogen Storage | Leave a comment

Platinum carbonyl clusters decomposition on defective graphene surface

Having single atoms or small clusters docked onto a single layer graphene represents a charming feature for energy-storage and catalysis. Unfortunately, the large cohesion energy of transition metals often prevents the isolation of nanoscopic clusters, which invariably tend to aggregate. … Continue reading

Posted in Catalysis, Graphene, Hydrogen Storage | Leave a comment

Super-activated biochar from poultry litter for high-performance supercapacitors

We report on the preparation of a novel hierarchically-porous super-activated carbon originating from organic waste with specific surface area exceeding 3000 m2/g, obtained starting from biochar derived by the pyrolysis of poultry litter. The chemical activation process proved to be efficient … Continue reading

Posted in Energy Storage, Graphene, Supercapacitors | Leave a comment

Effect of Ni-nanoparticles decoration on graphene to enable high capacity sodium-ion battery negative electrodes

Modification of graphene has been undertaken in many research contexts in order to improve its properties. In this study, we examine Ni-nanoparticles decoration on graphene and its effect on sodiumion battery performance. A definite trend is observed on the relationship … Continue reading

Posted in Batteries, Graphene | Leave a comment

Neutrons reveal ‘quantum tunnelling’ on graphene enables the birth of stars

Credit: Institut Laue Langevin See: https://phys.org/news/2017-02-neutrons-reveal-quantum-tunnelling-graphene.html and: http://www.cemag.us/news/2017/02/quantum-tunneling-graphene-holds-secret-birth-stars  

Posted in Graphene, Hydrogen Storage | Leave a comment

Mechanisms of Sodium Insertion/Extraction on the Surface of Defective Graphenes

Two chemically synthesized defective graphene materials with distinctly contrasting extended structures and surface chemistry are used to prepare sodium-ion battery electrodes. The difference in electrode performance between the chemically prepared graphene materials is qualified based on correlations with intrinsic structural … Continue reading

Posted in Batteries, Graphene | Leave a comment

Hydrogen motions in defective graphene: the role of surface defects

This gallery contains 1 photo.

Understanding the mobility of H at the surface of carbon nanostructures is one of the essential ingredients for a deep comprehension of the catalytic formation of H2 in interstellar clouds. We combined neutron vibrational spectroscopy with DFT molecular dynamics simulations to … Continue reading

More Galleries | Leave a comment

Magnetism of aniline modified graphene-based materials

This gallery contains 1 photo.

The possibility of producing magnetic graphene nanostructures by functionalization with aromatic radicals has been investigated. Functionalization of graphene basal plane was performed with three types of anilines: 4-bromoaniline, 4-nitroaniline and 4-chloroaniline. The samples were examined by composition analysis with energy-dispersive … Continue reading

More Galleries | Leave a comment

Graphene and Selected Derivatives as Negative Electrodes in Sodium- and Lithium-Ion Batteries

This gallery contains 1 photo.

The performance of graphene, and a few selected derivatives, was investigated as a negative electrode material in sodium and lithium-ion batteries. Hydrogenated graphene shows significant improvement in battery performance compared with as-prepared graphene, with reversible capacities of 488 mAh/g for … Continue reading

More Galleries | Leave a comment

Tracking the Hydrogen Motion in Defective Graphene

This gallery contains 1 photo.

Bulk defective graphene produced by thermal exfoliation of graphite oxide was treated under H2 and investigated with X-ray photoemission spectroscopy, neutron spectroscopy, and solid state nuclear magnetic resonance. Graphene defects appear effective in dissociating H2 molecule and in promoting H … Continue reading

More Galleries | Leave a comment