Evidence for metastable photo-induced superconductivity in K3C60

Excitation of high-Tc cuprates and certain organic superconductors with intense far-infrared optical pulses has been shown to create non-equilibrium states with optical properties that are consistent with transient high-temperature superconductivity.
These non-equilibrium phases have been generated using femtosecond drives, and have been observed to disappear immediately after excitation, which is evidence of states that lack intrinsic rigidity. Here we make use of a new optical device to drive metallic K3C60 with mid-infrared pulses of tunable duration, ranging between one picosecond and one nanosecond. The same superconducting-like optical properties observed over short time windows for femtosecond excitation are shown here to become metastable under sustained optical driving, with lifetimes in excess of ten nanoseconds. Direct electrical probing, which becomes possible at these timescales, yields a vanishingly small resistance with the same relaxation time as that estimated by terahertz conductivity. We provide a theoretical description of the dynamics after excitation, and justify the observed
slow relaxation by considering randomization of the order-parameter phase as the rate-limiting process that determines the decay of the light-induced superconductor.

Reproduced with permission. Copyright 2021, Springer Nature

Posted in Fullerenes, Superconductivity | Leave a comment

In situ decoration of laser-scribed graphene with TiO2 nanoparticles for scalable high-performance micro-supercapacitors

Graphene-based miniaturized supercapacitors, obtained via laser conversion of suitable precursors, have been attracting recent attention for the production of energy storage small-scale devices. In this work, a one-pot synthesis of TiO2 nanoparticles embedded in porous graphene-based electrodes has been obtained with the LightScribe® technology, by converting the precursor materials through the absorption of a DVD burner infrared laser light. Enhanced electrochemical performance of devices has been achieved thanks to the combination of faradic surface reactions, arising from metal oxide nanoparticles, with the conventional electrochemical double layer capacitance, arising from porous graphene. Micro-supercapacitors, consisting of TiO2-graphene electrodes, have been tested by investigating two hydrogel polymer electrolytes, based on polyvinyl alcohol/H3PO4 and polyvinyl alcohol/H2SO4, respectively. Specific areal capacitance up to 9.9 mF/cm2 are obtained in TiO2-graphene devices, corresponding to a volumetric capacitance of 13 F/cm3 and doubling the pristine graphene-based device results. The micro-supercapacitors achieved specific areal energy and specific areal power of 0.22 μWh/cm2 and 39 μW/cm2, along with a cyclability greater than 3000 cycles. These high-performance results suggest laser-scribed TiO2-graphene nanostructures as remarkable candidates in micro-supercapacitors for environment-friendly, large-scale and low-cost applications.

Reproduced with permission. Copyright 2021, Elsevier

Posted in Energy Storage, Graphene, Superconductivity | Leave a comment

Enhancing the performance of carbon electrodes in supercapacitors through medium-temperature fluoroalkylation

Medium-temperature fuoroalkylation of microporous activated carbons (ACs) with 1,1,1,2-tetrafuoroethane is presented. Supercapacitor (SC) electrodes based on the fuoroalkylated ACs showed enhanced specifc capacitance and high specific energy in electrolytes, either aqueous potassium hydroxide solution or tetraethylammonium tetrafuoroborate-acetonitrile solution. We found the largest increase in the specific capacitance, up to 89 F g–1, and in the specifc energy, up to 7.5 Wh kg–1, at the voltage of 1.5 V. The specific capacitance of the SC electrode based on the sample prepared at 350 °C increases
by a factor of ~2–3× for certain scan rates in the organic electrolyte. The fuoroalkylated ACs have good electrochemical stability in the tested model systems. We associate the registered enhanced SC parameters with an increase in the total fuorine content and high specifc surface areas of the carbon electrode materials. The surface “isolated fuorine” formed during fuoroalkylation at 300–400 °C ensures the production of improved electrode materials for SC applications. Fluoroalkylation is a simple and cost-efective method of improving the specifc capacitance of carbon-based SC electrodes.

Reproduced with permission. Copyright 2021, Springer Nature

Posted in Energy Storage, Supercapacitors | Leave a comment

Nickel addition to optimize the hydrogen storage performance of lithium intercalated fullerides

The addition of transition metals to alkali intercalated fullerides proved to enhance their already good hydrogen absorption properties. Herein we present a study based on two different synthetic strategies, allowing the addition of nickel as aggregates with different size to the lithium fulleride Li6C60: the former is based on the metathesis of nickel chloride, while the latter on the thermal decomposition of nickel carbonyl clusters. The hydrogen-storage properties of the obtained materials have been investigated with manometric and calorimetric measurements, which indicated a clear enhancement of the final absorption value and kinetics with respect to pristine Li6C60, as a consequence of nickel surface catalytic activity towards hydrogen molecules dissociation. We found up to 10 % increase of the total H2 weight % absorbed (5.5 wt% H2) in presence of Ni aggregates. Furthermore, the control of the transition metal particles size distribution allowed reducing the hydrogen desorption enthalpy of the systems.

Reproduced with permission. Copyright 2020, Elsevier

Posted in Catalysis, Energy Storage, Fullerenes, Hydrogen Storage | Leave a comment

Neutron scattering study of nickel decorated thermally exfoliated graphite oxide

Surface decoration of graphene-based nanostructures with metals has been predicted to be an efficient way towards the development of resistant catalysts and novel materials for energy applications, such as hydrogen production and storage. We report on an extensive neutron scattering study of a defective graphene-based material decorated with nickel nanoparticles, obtained via the chemical decoration of thermally exfoliated graphite oxide. The combination of neutron diffraction and inelastic neutron scattering measurements has been used to characterize the low-dimensional carbon backbone and the presence of the nickel nanoparticles, organized at the nanometer scale on the graphene plane. The structural features of this system, along with the nickel capability of dissociating the hydrogen molecule upon hydrogen treatment, are herein discussed.

Reproduced with permission. Copyright 2020, Elsevier

Posted in Energy Storage, Graphene, Hydrogen Storage | Leave a comment

Platinum carbonyl clusters decomposition on defective graphene surface

Having single atoms or small clusters docked onto a single layer graphene represents a charming feature for energy-storage and catalysis. Unfortunately, the large cohesion energy of transition metals often prevents the isolation of nanoscopic clusters, which invariably tend to aggregate. The decoration of defective graphene layers with single Pt atoms and sub-nanometric clusters is herein achieved by exploiting metal carbonyl clusters, as precursor, and investigated by means of transmission electron microscopy and X-ray photoemission spectroscopy. Unexpectedly, the process of aggregation of Pt into larger clusters is inhibited onto the surface of defective graphene, where the Pt-clusters are found to fragment even into single metal atoms.

Reproduced with permission. Copyright 2019, Elsevier

Posted in Catalysis, Graphene, Hydrogen Storage | Leave a comment

Degassing and phase transitions with temperature in melanophlogite

Melanophlogite (type I clathrate) has a microporous framework of corner sharing SiO4 tetrahedra, which can host guest gases. Here, a multi–analytical approach has been employed to understand the phase transitions with temperature and the degassing behaviour of a melanophlogite sample, which contains CO2 together with minor CH4 amount as enclathrated molecules.Synchrotron powder diffraction data collected between 110 and 380 K (ESRF, ID22 beamline) show a clear splitting of the major peaks up to about 360 K. Le Bail analysis shows that the low temperature phase is monoclinic, changing to cubic at ∼370 K. Landau theory analysis indicates that the transition is second order, with Tc = 369(1) K. Moreover, significant volume strain related to the phase transitions accounts for the lower thermal expansion at higher temperature. Differential scanning calorimetry shows evidence of a further phase transition between 220 and 250 K. The transition is confirmed by powder diffraction, with a change in slope in the b unit cell parameter and in volume expansion in the same temperature range. High temperature X-Ray powder diffraction between 313 and 673 K shows that thermal expansion decreases with temperature, possibly in relation with a structural rearrangement within the cubic structure during degassing. Thermogravimetric analysis shows that degassing of the guest gases begins at 450 K, and occurs at a higher rate above 750 K, but it is not completed even at T = 1273 K. Melanophlogite confirms to be a good host carrier for the gases, with gas loss only at higher temperature. Moreover, as degassing occurs with almost no thermal expansion, it could open promising application for its mechanical stability during degassing.

Reproduced with permission. Copyright 2019, Elsevier

Posted in Crystallography, Energy Storage | Leave a comment

Super-activated biochar from poultry litter for high-performance supercapacitors

We report on the preparation of a novel hierarchically-porous super-activated carbon originating from organic waste with specific surface area exceeding 3000 m2/g, obtained starting from biochar derived by the pyrolysis of poultry litter. The chemical activation process proved to be efficient to remove the majority of impurities other than carbon, stabilizing a highly porous hierarchical structure with local graphene-like morphology. The presence of P and S with concentration below 0.1 wt% distinguishes this activated carbon from the usual ones obtained from vegetal sources. Thanks to these features, the obtained porous compound demonstrated to behave as an excellent electrode material for high-performance symmetric supercapacitors, reaching high specific capacitance up to 229 (13) F/g. Remarkably, the devices also supply high current density of 10 A/g without using any conducting additives and display high power density and reliability. Moreover, these optimal performances have been obtained operating by using simple eco-friendly electrolytes, like KOH and Na2SO4 aqueous solutions. The availability, the biocompatibility and the inexpensiveness of the starting materials, together with the low environmental impact of the electrolyte, suggest possible large-scale applications for such devices, for example in the field of transportation or in renewable energy-grids, but also in the field of bio-medicine.

Reproduced with permission. Copyright 2019, Elsevier

Posted in Energy Storage, Graphene, Supercapacitors | Leave a comment

Pressure tuning of light-induced superconductivity in K3C60

Optical excitation at terahertz frequencies has emerged as an effective means to dynamically manipulate complex materials. In the molecular solid K3C60, short mid-infrared pulses transform the high-temperature metal into a non-equilibrium state with the optical properties of a superconductor. Here we tune this effect with hydrostatic pressure and find that the superconducting-like features gradually disappear at around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth induced by pressure is also detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase. The pressure dependence also suggests that transient, incipient superconductivity occurs far above the 150 K hypothesized previously, and rather extends all the way to room temperature.

Reproduced with permission. Copyright 2018, Springer Nature

Posted in Fullerenes, Superconductivity | Leave a comment

Electrochemical intercalation of fullerene and hydrofullerene with sodium

We report on the ability of fullerene C60 and hydrogenated fullerene C60Hx (x∼39) to operate as negative electrodes in novel Na-ion batteries. Building upon the known solubility of C60 in common organic electrolytes used in batteries, we developed a suitably optimized solid-state Na-(polyethylene oxide) electrolyte for this application. Electrochemical and structural properties of the fullerene electrodes were investigated through cyclic voltammetry, fixed-current charge/discharge of the electrodes, impedance spectroscopy and powder X-ray diffraction. Both C60 and hydrogenated C60 have been electrochemically intercalated with sodium. Specific capacities after the first cycle are 250 mAh g−1 and 230 mAh g−1 for C60 and C60Hx respectively. However, C60 electrode shows a strong irreversible character after the first discharge, probably due to the formation of stable polymeric NaxC60 phases, where Na+ ions diffusion is hindered. On the contrary, C60Hx displays better reversibility, suggesting that hydrogenation of the buckyball could be effective to preserve sufficiently large interstitial pathways for Na+ diffusion upon intercalation.

Reproduced with permission. Copyright 2018, Elsevier

Posted in Batteries, Energy Storage, Fullerenes | Leave a comment